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1. Introduction 

The Schouten-Nijenhuis bracket was first discovered by Schouten [24,25] who, with 
Nijenhuis [21], establihed its main properties. A strong renewal of interest in that bracket 
occurred when Lichnerowicz began to consider generalizations of symplectic or contact 
structures which involve contravariant tensor fields rather than differential forms. He defined 
Poisson and Jacobi structures [ 13,141 and observed that the Schouten-Nijenhuis bracket 
allows to put under an intrinsic, coordinate free form the conditions under which a 2- 
multivector field A on a manifold defines a Poisson structure, as well as the conditions 
under which a pair (A, E) of a 2-multivector field A and a vector field E defines a Jacobi 
structure. 

Properties of the Schouten-Nijenhuis bracket were very actively investigated in recent 
years [ 1,12,20,22], as well as its very numerous applications, in particular to Poisson geom- 
etry and Poisson cohomology [2,3,7,8,22,26-281, bihamiltonian manifolds and integrable 
sytems [ 11,191, Poisson-Lie groups [S, 161, Lie groupoids [6,17,18]. Generalizations of 
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that bracket were considered [4,9,10,15]. For some time, the sign conventions used in the 
definition of the Schouten-Nijenhuis bracket made by different authors were not always 
in agreement and very often led to rather complicated formulas. Koszul 1121 introduced 
in its definition new sign conventions much more natural than the original ones used by 
Schouten and Nijenhuis, leading to formulas easier to handle. We will use essentially these 
sign conventions (maybe with a slight change explicitly indicated in Remark 4.2). 

In this paper, we first briefly review the main already known properties of the Schouten- 
Nijenhuis bracket. We have tried to introduce these properties as simply as possible, and 
to state explicitly all the conventions made. Then we prove a formula (new, up to our 
knowledge) which relates the Schouten-Nijenhuis bracket with the right interior product of 
multivectors by one-forms. That formula allows the recursive calculation of the Schouten- 
Nijenhuis bracket of multivector fields of any degree. 

2. Right and left interior products on a manifold 

2.1. The graded algebras of multivectors and fkms 

Let M be a real smooth (C”) manifold of dimension m; TM and T*M its tangent and 
cotangent bundles, respectively. For each integer p > I, we denote by A"(M) and D P (M) 
the spaces of smooth sections, respectively, of A” TM and of A” T* M (the vector bundles 
pth exterior powers of TM and T'M, respectively). A section P E AP(M) will be called 
a p-multivectorjeld (or simply a vector field for p = 1) and a section n E L?J'(M) a 
p-d@rentialform (a Pfuffform for p = 1). By convention, for p = 0, we set A’(M) = 
L?‘(M) = CW(M, R), the algebra of smooth real functions on M. For p < 0, we set 
A”(M) = G’“(M) = (0), the null module on CCC(M. R). Of course, taking into account 
the skew-symmetry, we have also, for p z m, A"(M) = 62"(M) = (0). Finally, we set 

A(M) = ~p~.zAp(M), L?(M) = EB~EEQ~(M). 
We recall that a p-multivector P E AP(M) can be considered as a map, p-multilinear 

on the ring Cm (M, R)), alternate, defined on (f2 ’ (M))P, which takes its values in the ring 
Cx(M, R). Explcitly, for crt, . . . up E L?'(M) andx E M, 

P(crl,. , q)(x) = P(X)(cYl(X), . . .ap(x)). 

Similarly, a section n E !ZJ'(M) can be considered as a map, p-multilinear on the ring 
CW(M, IF!), alternate, defined on (A'(M))J', with values in Cw(M, R). Explicitly, for 
X1,.,.,X, E Q’(M)andx EM, 

r7(XI 7 . ., X,)(x) = rl(X)(Xl (x), . ., X,(x)). 

We recall also that A(M) and 6?(M) are Z-graded associative algebras on Cm(M, R), with 
the wedge product (denoted by A) as composition law. For example, the wedge product 
P A Q of P E AP(M) and Q E Aq(M) is defined by the formula, in which the ol;, 
1 5 i p p + q, are Pfaff forms, 
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PAQkfl,...,Qp+q) 
= c ??(o)P(a,(~)t . .t a,(p)1 Q(G(~+I), . . ., ~(~+y)). 

~~QAq) 

We have denoted by S(p, q) the set of “shuffle” permutations of (1, 2, . . . , p + q}, i.e., 
permutations which satisfy 

a(l) < O(2) < . . . <a(p) and a(p+l) -=a(p+2) <...<a(p+y). 

In the above formula E(O) is equal to 1 if the permutation G is even and to -1 if that 
permutation is odd. 

2.2. The pairing 

There is a natural C?(M, R)-bilinear map of R(M) x A(M) into CW(M, R), called 
the pairing, denoted by (q, P) H (Q, P). Let us recall its definition. If 17 E tiny(M) and 
P E AP(M) with p # q, then (q, P) = 0. If f E Q’(M) = P(M, R) and g E 
A”(M) = CCO(M, R), then (f, g) is the ordinary product fg. If c;yt A. . A up E fZJ’(M) is 
a decomposable p-form and Xi A . . A X, E AP(M) a decomposable p-multivector field, 
(therefore the Q; are Pfaff forms and the Xi are vector fields), then 

(at A... A ffp, XI A.. . A X,) = det((oi, Xj)). 

The definition of the pairing extends then to Q(M) x A(M) by bilinearity, in a unique way. 
For q E fiJ’(A4) and Xl,. . , X, E A’(M), we have 

(V. Xl A.. . A X,) = 17(X1, . . ., x,>. 

Similarly, for P E AJ’(M> andot,. . . , ap E Q’(M), 

(a1 r\...r\ap,P)=P(al,...,ac,). 

The pairing is nondegenerate; therefore, a multivector field (resp. a differential form) is 
determined when one knows its pairing with any differential form (resp. with any multivector 
field). 

2.3. Interior products 

Let X E A’(M) be a vector field. The well-known interior product by X, denoted by 
i(X), is the unique graded P’(M, R)-linear endomorphism of D(M), of degree -1, such 
that, for q E U(M), i (X)q is the element of LY-’ (M) defined by the formula, in which 

Xl,..., X,-t E A’(M) are vector fields, 

i(X)17(Xt,. . . , X,-t) = n(X, Xl,. . . , X,-i). (1) 

The interior product i(X) by a vector field X is a derivation of degree -1 of the exterior 
algebra D(M). It means that, for Q E P(M) and [ E Q(M), 

i(X)(v A 0 = i(X)v A < + (-l)q~ A i(X){. (2) 
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More generally, let P E AP(M). We define the right interim-product by P as the unique 
COC(M, R.)-linear endomorphism of R(M), of degree -p, such that, for n E L?+‘(M), with 
q L p, i( P)q is the unique element of @-P(M) such that, for each R E Aq-I’(M), 

(i(P)q, R) = (a. P A R). (7) 

For ,f E A”(M) = Cm(M, Iw), i(f) is just the ordinary product by ,f’. For P E AP(M), 

p > l,i(P)ingeneralisnomoreaderivationofR(M).ForP E AI’(M)andQ E AY(A4). 

we have 

i( = i(Q A P). (4) 

Similarly, let (Y E L?‘(M). The left interior product by CY, denoted by j(cr). is the 
unique graded Cm(M, IL!)-linear endomorphism of A(M), of degree -1, such that, for 
Q E Aq(M), j(a)Q is the unique element of Aq-‘(M) defined by the formula, in which 
ot..... (Y(,_I E n’(M) are Pfaff forms, 

j(a)Q(al,...,c+l)= Q(a~....,c+-l,a). (5) 

Observe that while X appears at the first place on the right-hand side of (1). u appears at 
the last place on the right-hand side of (5). 

The left interior product j(a) by a Pfaff form (Y is less often used in differential geometry 
than the (right) interior product by a vector field, probably because multivector fields are 
less often used than differential forms. However, its properties are similar. In particular, it 
is a “derivation on the right” of degree - 1 of the exterior algebra A(M). It means that, 
for P E A(M) and Q E AY(M). it satisfies the formula, which should be compared 
with (2) 

j(a)(P /\ Q) = PA j(a)Q+ (-lY’j((.y)P A Q. (6) 

More generally, let r] E JF(M). We define the left interior product by q, denoted by 
j(q), as the unique Cm(M, R)-linear endomorphism of A(M), of degree -q, such that, for 
P E At’(M), with p 3 q, j (TJ) P is the unique element of A P-q(M) which satisties, for 
each < E L’J’-q(M), 

K. j(rl)P) = K A 17, P). (7) 

That formula should be compared with (3). For f E L”(M) = Y(M, [w), j(f) is just the 
ordinary product by f. For q E L?P(M), p 1 1, j (r]) is in general no more a “derivation on 
the right” of A(M). For q E L2P(M) and 4 E Rq(M), we have the formula, which should 
be compared with (4), 

The sign conventions used here in the definitions of the right and left interior products 
are in agreement with the widely used definition of the interior product by a vector field. 
When the degrees of the multivector field and of the form are equal, the interior products 
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reduce to the pairing, since we have the very natural formulas, for P E At’(M) and q E 

Qf(M), 

i(P)rl = j(v)P = (7, P). (9) 

3. The Schouten-Nijenhuis bracket 

The left and right interior products are “punctual” operations: the value of the right 
interior product of a differential form by a multivector field (resp., the left interior product 
of a multivector field by a differential form) at a point x of the manifold M depends only 
on the values at x of that differential form and that multivector field. Other operations, such 
that the exterior differentiation d (for differential forms), the Lie derivative with respect 
to a vector field (for multivector fields as well as differential forms), and the bracket of a 
vector field with another vector field (which is in fact a particular case of Lie derivative) 
are not punctual: their values at a point x E M depend on the l-jets at x of the fields 
under consideration. The Schouten-Nijenhuis bracket is of that type. In fact, it is a natural 
extension of the Lie derivative of multivector fields with respect to a vector field. The 
following proposition states some of its properties which can be used for its definition. 

Proposition 3.1. Let M be a smooth real m-dimensional manifold and A(M) the exte- 
rior algebra of multivectorfields on M. There exists a unique [W-bilinear map, dejmed on 
A(M) x A(M), with values in A(M), called the Schouten-Ntjenhuis bracket and denoted 
by (P, Q) H [P, Q], which satis$es the following properties: 
1. For f and g E A’(M) = CW(M, [w), [f, g] = 0. 
2. For a vector field X E A’ (M) and a multivector field Q E A(M), [X, Q] is the Lie 

derivative L(X) Q of Q with respect to X. 
3. For P E At’(M) and Q E Aq(M), 

[P, Q] = -(-l)(p-‘)(q-I),,, P]. 

4. For P E AP(M), Q E Aq(M) and R E A(M), 

[P, Q A R] = [P, Q] A R + (-l)(p-‘)yQ A [P, R]. 

(10) 

(11) 

Proof Several full proofs of this proposition can be found in the literature, for example 
in [27] (with different sign conventions), [22] or [ 121. We will indicate here only the main 
ingredients of a very straightforward proof. Property 4 implies that the Schouten-Nijenhuis 
bracket [P, Q] is local: its values in an open subset of M depend only on the values of the 
multivector fields P and Q in that open subset. Therefore we may work in the domain of 
a chart, in which P and Q are finite sums of exterior products of vector fields (or maybe 
functions, if their degree is 0). Properties l-4 allow to express [P, Q] in the domain of 
that chart in terms of a finite sum of exterior (or ordinary) products involving functions 
and Lie derivatives of functions or vector fields with respect to a vector field. This ensures 
the unicity. Finally, to prove the existence we have just to prove that when the value of a 
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Schouten-Nijenhuis bracket in the domain of a chart is calculated, using properties I-4. in 
two different ways, the obtained result is the same. 0 

Remark 3.2. As an easy consequence of properties 14, the Schouten-Nijenhuis bracket 
satisfies the following additional property: 
5. For P E AI’(M) and Q E Aq(M). we have [P. Q] E Ap+Y-‘CM). 

Properties 4 and 5 show that for a given P E AP(M), the map Q F+ [P. Q ] is a derivation 
of degree p - 1 of the exterior algebra A(M). 

Using properties 3-5, we see that the Schouten-Nijenhuis bracket satisfies: 
6. For P E A(M), Q E Aq(M) and R E A’(M). 

[P A R. Q] = P A [R, Q] + (-l)‘@)‘[P. Q] A R. (12) 

Properties 5 and 6 show that, for a given Q E AY(M). the map P H [P. Q] is a 
“derivation on the right” of A(M). 

The next proposition is a natural generalization of the well-known fact that the space 
A’ (M), with the bracket of vector fields as a composition law, is a Lie algebra. 

Proposition 3.3. Let P E AP(M), Q E AY(M) and R E A”(M) be three homogeneous 
multivectorjelds on the manifold M. The Schouten-Nijenhuis bracket satis$es the,f~&~w,ing 
identi?, called the graded Jacobi identity, 

(-I)(“-I)(“-‘)[P, [Q, R]] + (-l)(q-‘)(p-‘)[Q, [R, P]] 

+ (-I)“-“‘“-“[R. [P. Q]] = 0. (13) 

ProofI We will give only its main lines. First we observe that the formula is satisfied when 
the degrees p, q and r are equal to 0 or 1. Then the general result follows by induction on 
the degrees, using properties 3 and 4 to replace, for example, P by PAX, with X E A’ (M), 
and therefore p by p + 1. 0 

Remark 3.4. 
(I) Proposition 3.3, together with properties 3 and 5, states that the graded vector space 

A(M), with the Schouten-Nijenhuis bracket as composition law, is a graded Lie algebra 
[23]. In order to have a simple rule for composing the degrees, one has to state that the 
“Lie degree” of a homogeneous multivector field P E A”(M) (that means, its degree 
with respect to the Schouten-Nijenhuis bracket as a graded Lie algebracomposition law) 
is p - 1. Of course, the Lie degree of P E A”(M) should not be confused with its ordi- 
nary degree (also called exterior degree), which is p. The space A’ (M) of vector fields. 
which is a Lie algebra in the usual sense, is then the subspace of A(M) of Lie degree 0. 

(2) As observed by Grabowski [7], the graded Jacobi identity may be written under other 
forms, in which its meaning is clearer than under the form (13), and which still have a 
meaning for more general brackets which are not graded-skew-symmetric (i.e.. which 
do not satisfy (IO)). Let us set, for each P E AP(M) and Q E A(M), 

adp Q = [P, Ql. (14) 
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Then adp is a graded linear endomorphism of degree p - 1 of A(M). Using (IO), we 
see that the graded Jacobi identity (13) of Proposition 3.3 can be written as 

adp([Q, R]) = [adp Q, R] + (-l)(p-l)(q-‘)[Q, adp RI, (15) 

or as 

ad,p,gl = adp o adQ -(- l)(p-l)(q-‘) adp 0 adp . (16) 

Eq. (15) has a clear meaning: the graded endomorphism adp, of degree p - I, is a deriva- 
tion of the graded Lie algebra A(M) with the Schouten-Nijenhuis bracket as composition 
law (the degree of Q E Aq(M) considered here being its Lie degree q - 1 rather than its 
exterior degree q). 

Eq. (16) means that the endomorphism ad[p,QJ of A(M), of degree p + q - 2, is the 
graded commutator of the endomorphisms adp (of degree p - 1) and adQ (of degree q - 1). 
The definition of the graded commutator of two graded endomorphisms is recalled at the 
beginning of the next section for endomorphisms of C?(M), but the same definition holds 
for endomorphisms of any graded vector space, in particular for endomorphisms of A(M). 

4. Interior product operations on a Schouten-Nijenhuis bracket 

Let us recall that if @ and ly are two graded linear endomorphisms of R(M), of degrees 
cp and @ respectively, their graded commutator, denoted by [@, 91, is defined as 

[@, @] = 0 0 9 - (-lY+% 0 @. (17) 

The following proposition, due to Koszul [ 121, indicates a very nice and useful expression 
for the interior product by a Schouten-Nijenhuis bracket. A special case of that formula 
appears in the works of Lichnerowicz [ 13,141; in that special case, the interior product by 
a Schouten-Nijenhuis bracket [P, Q] with P E AP(A4) and Q E Aq(M) is applied to a 
differential form r] of degree p + q - I, equal to the degree of [P, Q]; that interior product 
is therefore simply the pairing (I], [P, Q]), and in the right-hand side of Eq. (18) below, 
the expression di (Q)i( P)q vanishes, since i (Q)i (P)q = i (P A Q)v = 0, the multivector 
field P A Q being of degree p + q and the differential form q of degree p + q - 1. 

Proposition 4.1. Let P and Q be two multivectorjields on the manifold M, and [P, Q] be 
their Schouten-Nijenhuis bracket. The interior product i([ P, Q]) is expressed, in terms of 
the exterior difSerentia1 d and the interior products i(P) and i(Q), by 

i(IP, Ql> = --[[i(Q), dl, i(P)I, (18) 

where the brackets which appear in the right-hand side are graded commutators of graded 
endomorphisms of fl (M). 

Prooj We indicate only its main lines. We observe first that Eq. (IS) is satisfied when P 
and Q are homogeneous of degrees 0 or 1. Then, by using (10) and (1 1 ), and by replacing 
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P by P A X, where X is a vector field, and therefore replacing p by p + I, the result is 
obtained, by induction on the degrees, for homogeneous P and Q of all degrees. For P and 
Q eventually not homogeneous, the general result follows by bilinearity. ??

Remark 4.2. 
(1) In [12. p. 2661, Koszul writes, instead of (18). for u and h E A(M), 

[[i(a). dl. i(b)] = i([a. b]). 

The sign differences between that formula and (18) is probably due to different con- 
ventions about the interior product. 

(2) Let .f’ E A’(M) = Cm(M, R) be a smooth function, and P E AP(M). By using (18). 
we easily see that for any q E SZP-’ (M), 

(v. [P, .fl) = (17 A d.f, P). (19) 

By a repeated application of that formula, we see that, for p smooth functions f’r . . f,] E 
A’(M), and P E AP(M), 

[[. LIP. .f11. fzl. . . .I. .r,l = Wf;, A df,-1 A . . A d,fl, 0. (20) 

Let us now indicate a formula which relates the left interior product of a Schouten- 
Nijenhuis bracket by a Pfaff form. 

Proposition 4.3. Let P E A(M) be a multivector jield, Q E Aq (M) a homogeneous 

multivector,field of degree q, and q a Pfaff form on the smooth manifold M. As in Section 2.3, 
we denote by j (17) the left interior product by 17. We haste 

j(rlNP. Ql - [P, j(rl)Ql - (-t)y-‘[jt~)P, Ql 

= t-l)q-2tj(dq>(P A Q) - P A jtdq)Q - ,jtdv)P A Q). (21) 

Proof We may assume, without loss of generality. that P is homogeneous of degree I?. Let 

CEQ p+-‘(M) We have 

(1. ,j(q)[P. Ql) = (5 A V. [P. Ql) = i(tP, Ql)tC A rl). 

By using ( 18), we obtain 

(t. j(q)[P. Ql) = -(d(i(P)t). j(q)Q) + (-l)cp-“tq-“(d(i(Q)~), j(rl)P) 

-(-l)q-l(d(itj(~)P)~). Q) + (-l)‘“-“q(d(i(j(77)Q)r), P) 

+t-l)‘+‘)(dL j(q)(Q A f’)) + t-1) (pP1)q(t, jCdrl)CQ A P)) 

-(-l)q(C, P A j(drl)Q) - (-l)‘P-‘)Y(t, Q A j(dq)P). 

Similarly, 

(t, [j(rl)P, Ql) = (-l)p’q-“(d(i(QX)V j(rl)P) - (d(itjtp)P)S), Q) 

+(-l)(P-l)(q~‘)(d[. Q A j(v)P). 
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and 

(t, [P, j(rl)Ql) = -(d(i(P)O, j(v)Q) + (-1)‘P-1)y(d(i(j(7])Q)r), P) 

+(-l)p(q-2)(dt, j(rl)Q A P). 

By putting together the three above expressions, we obtain Eq. (21). 0 

Remark 4.4. 
(1) When n is a closed Pfaff form, the right-hand side of (21) vanishes, and that equation 

shows that the left interior product j (17) is a “derivation on the right” of the graded Lie 
algebra A(M), with the Schouten-Nijenhuis bracket as composition law. 

(2) Let f E G”(M) = C?(M, IR) be a smooth function. Then j(f) is simply the ordinary 
product by f and, instead of (20), we have 

f[f’t Ql = VP+ Ql - P A (fQ> = [f’t fQl+ UP) A (2. 

(3) In [ 12, p. 264, Eq. (2.4)], Koszul indicates the formula, where D is a differential operator 
which generates the Schouten-Nijenhuis bracket (in a sense specified in that paper) and 
w a differential form of degree p, 

Dj(w) - (-l)pj(w)D = -j(dw), 

where we have denoted by j(w) the right interior product by w, in order to use the 
same notations as above (Koszul denotes that interior product by i(w)). That formula 
seems to be related with Eq. (21) and may offer a way to generalize Proposition 4.3 for 
left interior products of Schouten-Nijenhuis brackets by differential forms of degree 
higher than 1. 

(4) Formula (21) in Proposition 4.3 allows us to obtain an expression of [ P, Q] in terms of 
exterior products and Schouten brackets of multivector fields of degree strictly lower 
than the degrees of P and Q. Therefore, a repeated use of that formula yields an 
expression of [P, Q] in terms of exterior products, Lie derivatives of functions with 
respect to vector fields and brackets of vector fields. 
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